/* Copyright (c) 2007 James Antill -- See LICENSE file for terms. */ #ifndef USTR_UTF8_H #error " You should have already included ustr-utf8.h, or just include ustr.h." #endif /* import and hacked from: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c 2007-06-04 */ /* * This is an implementation of wcwidth() and wcswidth() (defined in * IEEE Std 1002.1-2001) for Unicode. * * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html * * In fixed-width output devices, Latin characters all occupy a single * "cell" position of equal width, whereas ideographic CJK characters * occupy two such cells. Interoperability between terminal-line * applications and (teletype-style) character terminals using the * UTF-8 encoding requires agreement on which character should advance * the cursor by how many cell positions. No established formal * standards exist at present on which Unicode character shall occupy * how many cell positions on character terminals. These routines are * a first attempt of defining such behavior based on simple rules * applied to data provided by the Unicode Consortium. * * For some graphical characters, the Unicode standard explicitly * defines a character-cell width via the definition of the East Asian * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes. * In all these cases, there is no ambiguity about which width a * terminal shall use. For characters in the East Asian Ambiguous (A) * class, the width choice depends purely on a preference of backward * compatibility with either historic CJK or Western practice. * Choosing single-width for these characters is easy to justify as * the appropriate long-term solution, as the CJK practice of * displaying these characters as double-width comes from historic * implementation simplicity (8-bit encoded characters were displayed * single-width and 16-bit ones double-width, even for Greek, * Cyrillic, etc.) and not any typographic considerations. * * Much less clear is the choice of width for the Not East Asian * (Neutral) class. Existing practice does not dictate a width for any * of these characters. It would nevertheless make sense * typographically to allocate two character cells to characters such * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be * represented adequately with a single-width glyph. The following * routines at present merely assign a single-cell width to all * neutral characters, in the interest of simplicity. This is not * entirely satisfactory and should be reconsidered before * establishing a formal standard in this area. At the moment, the * decision which Not East Asian (Neutral) characters should be * represented by double-width glyphs cannot yet be answered by * applying a simple rule from the Unicode database content. Setting * up a proper standard for the behavior of UTF-8 character terminals * will require a careful analysis not only of each Unicode character, * but also of each presentation form, something the author of these * routines has avoided to do so far. * * http://www.unicode.org/unicode/reports/tr11/ * * Markus Kuhn -- 2007-05-26 (Unicode 5.0) * * Permission to use, copy, modify, and distribute this software * for any purpose and without fee is hereby granted. The author * disclaims all warranties with regard to this software. * * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c */ /* auxiliary function for binary search in interval table */ USTR_CONF_i_PROTO int ustr__utf8_bisearch(USTR__UTF8_WCHAR ucs, const struct ustr__utf8_interval *table, int max) { int min = 0; int mid; if (ucs < table[0].first || ucs > table[max].last) return (USTR_FALSE); while (max >= min) { mid = (min + max) / 2; if (ucs > table[mid].last) min = mid + 1; else if (ucs < table[mid].first) max = mid - 1; else return (USTR_TRUE); } return (USTR_FALSE); } /* The following two functions define the column width of an ISO 10646 * character as follows: * * - The null character (U+0000) has a column width of 0. * * - Other C0/C1 control characters and DEL will lead to a return * value of -1. * * - Non-spacing and enclosing combining characters (general * category code Mn or Me in the Unicode database) have a * column width of 0. * * - SOFT HYPHEN (U+00AD) has a column width of 1. * * - Other format characters (general category code Cf in the Unicode * database) and ZERO WIDTH SPACE (U+200B) have a column width of 0. * * - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF) * have a column width of 0. * * - Spacing characters in the East Asian Wide (W) or East Asian * Full-width (F) category as defined in Unicode Technical * Report #11 have a column width of 2. * * - All remaining characters (including all printable * ISO 8859-1 and WGL4 characters, Unicode control characters, * etc.) have a column width of 1. * * This implementation assumes that wchar_t characters are encoded * in ISO 10646. */ USTR_CONF_i_PROTO USTR__SSIZE ustr__utf8_mk_wcwidth(USTR__UTF8_WCHAR ucs) { /* sorted list of non-overlapping intervals of non-spacing characters */ /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */ static const struct ustr__utf8_interval combining[] = { { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 }, { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 }, { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 }, { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 }, { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED }, { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A }, { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 }, { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D }, { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 }, { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD }, { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C }, { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D }, { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC }, { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD }, { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C }, { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D }, { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 }, { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 }, { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC }, { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD }, { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D }, { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 }, { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E }, { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC }, { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 }, { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E }, { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 }, { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 }, { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 }, { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F }, { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 }, { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD }, { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD }, { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 }, { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B }, { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 }, { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 }, { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF }, { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 }, { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F }, { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B }, { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F }, { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB }, { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F }, { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 }, { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD }, { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F }, { 0xE0100, 0xE01EF } }; /* test for 8-bit control characters */ if (ucs == 0) return 0; if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0)) return (-1); /* binary search in table of non-spacing characters */ if (ustr__utf8_bisearch(ucs, combining, sizeof(combining) / sizeof(struct ustr__utf8_interval) - 1)) return 0; /* if we arrive here, ucs is not a combining or C0/C1 control character */ return 1 + (ucs >= 0x1100 && (ucs <= 0x115f || /* Hangul Jamo init. consonants */ ucs == 0x2329 || ucs == 0x232a || (ucs >= 0x2e80 && ucs <= 0xa4cf && ucs != 0x303f) || /* CJK ... Yi */ (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */ (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */ (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */ (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */ (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */ (ucs >= 0xffe0 && ucs <= 0xffe6) || (ucs >= 0x20000 && ucs <= 0x2fffd) || (ucs >= 0x30000 && ucs <= 0x3fffd))); } /* import and hacked from: http://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c 2007-06-04 */ /* * The utf8_check() function scans the '\0'-terminated string starting * at s. It returns a pointer to the first byte of the first malformed * or overlong UTF-8 sequence found, or NULL if the string contains * only correct UTF-8. It also spots UTF-8 sequences that could cause * trouble if converted to UTF-16, namely surrogate characters * (U+D800..U+DFFF) and non-Unicode positions (U+FFFE..U+FFFF). This * routine is very likely to find a malformed sequence if the input * uses any other encoding than UTF-8. It therefore can be used as a * very effective heuristic for distinguishing between UTF-8 and other * encodings. * * Markus Kuhn -- 2005-03-30 */ USTR_CONF_i_PROTO USTR__UTF8_WCHAR ustr__utf8_check(const unsigned char **ps) { const unsigned char *s = *ps; USTR__UTF8_WCHAR ret = 0; if (*s < 0x80) /* 0xxxxxxx */ { ret = *s; s++; } else if ((s[0] & 0xe0) == 0xc0) /* 110XXXXx 10xxxxxx */ { if (((s[1] & 0xc0) != 0x80) || ((s[0] & 0xfe) == 0xc0)) /* overlong? */ goto utf8_fail; ret = ((s[0] & 0x1f) << 6) | (s[1] & 0x3f); s += 2; } else if ((s[0] & 0xf0) == 0xe0) /* 1110XXXX 10Xxxxxx 10xxxxxx */ { if (((s[1] & 0xc0) != 0x80) || ((s[2] & 0xc0) != 0x80) || ((s[0] == 0xe0) && ((s[1] & 0xe0) == 0x80)) || /* overlong? */ ((s[0] == 0xed) && ((s[1] & 0xe0) == 0xa0)) || /* surrogate? */ ((s[0] == 0xef) && (s[1] == 0xbf) && ((s[2] & 0xfe) == 0xbe))) /* U+FFFE or U+FFFF? */ goto utf8_fail; ret = (((s[0] & 0x0f) << 12) | ((s[1] & 0x3f) << 6) | (s[2] & 0x3f)); s += 3; } else if ((s[0] & 0xf8) == 0xf0) /* 11110XXX 10XXxxxx 10xxxxxx 10xxxxxx */ { if (((s[1] & 0xc0) != 0x80) || ((s[2] & 0xc0) != 0x80) || ((s[3] & 0xc0) != 0x80) || ((s[0] == 0xf0) && ((s[1] & 0xf0) == 0x80)) || /* overlong? */ ((s[0] == 0xf4) && (s[1] > 0x8f)) || (s[0] > 0xf4)) /* > U+10FFFF? */ goto utf8_fail; ret = (((s[0] & 0x07) << 18) | ((s[1] & 0x3f) << 12) | ((s[2] & 0x3f) << 6) | (s[3] & 0x3f)); s += 4; } else goto utf8_fail; *ps = s; return (ret); utf8_fail: *ps = NULL; return (0); } /* See: http://en.wikipedia.org/wiki/UTF-8#Description */ USTR_CONF_e_PROTO const unsigned char *ustr__utf8_prev(const unsigned char *ptr, size_t len) { /* find the begining of the previous UTF-8 character, no checking */ while (len--) { if ((*--ptr & 0xc0) != 0x80) return (ptr); } return (0); } USTR_CONF_e_PROTO const unsigned char *ustr__utf8_next(const unsigned char *ptr) { /* find the begining of the next UTF-8 character, no checking. * -- assumes NIL termination, so no length. */ while (1) { if ((*++ptr & 0xc0) != 0x80) break; } return (ptr); } USTR_CONF_I_PROTO int ustr_utf8_valid(const struct Ustr *s1) { const unsigned char *beg = (const unsigned char *)ustr_cstr(s1); const unsigned char *scan = beg; size_t ret = 0; USTR_ASSERT(ustr_assert_valid(s1)); while (*scan) { USTR_ASSERT(ustr_len(s1) > (size_t)(scan - beg)); ustr__utf8_check(&scan); if (!scan) return (USTR_FALSE); ++ret; } USTR_ASSERT(ustr_len(s1) >= (size_t)(scan - beg)); if (ustr_len(s1) != (size_t)(scan - beg)) return (USTR_FALSE); /* string contains a NIL byte */ return (USTR_TRUE); } USTR_CONF_I_PROTO size_t ustr_utf8_len(const struct Ustr *s1) { /* this is a "fast" version */ const unsigned char *scan = (const unsigned char *)ustr_cstr(s1); size_t ret = 0; USTR_ASSERT(ustr_assert_valid(s1)); while (*scan) ret += ((*scan++ & 0xc0) != 0x80); return (ret); } USTR__SSIZE ustr_utf8_width(const struct Ustr *s1) { const unsigned char *beg = (const unsigned char *)ustr_cstr(s1); const unsigned char *scan = beg; USTR__SSIZE ret = 0; USTR_ASSERT(ustr_assert_valid(s1)); while (*scan) { USTR__UTF8_WCHAR tmp = 0; USTR_ASSERT(ustr_len(s1) > (size_t)(scan - beg)); tmp = ustr__utf8_check(&scan); if (!scan) return (0); ret += ustr__utf8_mk_wcwidth(tmp); } USTR_ASSERT(ustr_len(s1) >= (size_t)(scan - beg)); if (ustr_len(s1) != (size_t)(scan - beg)) return (0); /* string contains a NIL byte */ return (ret); } USTR_CONF_I_PROTO size_t ustr_utf8_chars2bytes(const struct Ustr *s1, size_t pos, size_t len, size_t *pret_pos) { const unsigned char *beg = (const unsigned char *)ustr_cstr(s1); const unsigned char *scan = beg; const unsigned char *ret_beg = beg; size_t ret_pos = 0; USTR_ASSERT(ustr_assert_valid_subustr(s1, pos, len) || !len); USTR_ASSERT(pret_pos || (pos == 1)); while (*scan) { const unsigned char *prev = scan; USTR_ASSERT(ustr_len(s1) > (size_t)(scan - beg)); scan = ustr__utf8_next(scan); if (!--pos) { ret_beg = prev; ret_pos = (ret_beg - beg) + 1; break; } } if (len) while (*scan && --len) { USTR_ASSERT(ustr_len(s1) > (size_t)(scan - beg)); scan = ustr__utf8_next(scan); } USTR_ASSERT(ustr_len(s1) >= (size_t)(scan - beg)); if (len > 1) return (0); /* string contains a NIL byte, or ends with a bad UTF-8 char */ if (pret_pos) *pret_pos = ret_pos; return (scan - ret_beg); } USTR_CONF_I_PROTO size_t ustr_utf8_bytes2chars(const struct Ustr *s1, size_t pos, size_t len, size_t *pret_pos) { const unsigned char *beg = (const unsigned char *)ustr_cstr(s1); const unsigned char *scan = beg; const unsigned char *ret_beg = beg; size_t clen = ustr_assert_valid_subustr(s1, pos, len); size_t unum = 0; size_t ret_pos = 0; USTR_ASSERT(pret_pos || (pos == 1)); if (!clen) /* bad position */ return (0); scan += pos; if (!(ret_beg = ustr__utf8_prev(scan, pos))) return (0); USTR_ASSERT(ustr_len(s1) >= (size_t)(scan - beg)); scan = beg; while (scan < ret_beg) unum += ((*scan++ & 0xc0) != 0x80); unum += ((*scan & 0xc0) != 0x80); ret_pos = unum; if (len) { ret_beg += len - 1; USTR_ASSERT(ustr_len(s1) >= (size_t)(ret_beg - beg)); while (scan <= ret_beg) unum += ((*scan++ & 0xc0) != 0x80); } if (pret_pos) *pret_pos = ret_pos; return (unum - ret_pos); }